Energy Saving EDF Scheduling for Wireless Sensors on Variable Voltage Processors

نویسندگان

  • Hussein EL Ghor
  • El-Hadi M Aggoune
چکیده

Advances in micro technology has led to the development of miniaturized sensor nodes with wireless communication to perform several real-time computations. These systems are deployed wherever it is not possible to maintain a wired network infrastructure and to recharge/replace batteries and the goal is then to prolong as much as possible the lifetime of the system. In our work, we aim to modify the Earliest Deadline First (EDF) scheduling algorithm to minimize the energy consumption using the Dynamic Voltage and Frequency Selection. To this end, we propose an Energy Saving EDF (ES-EDF) algorithm that is capable of stretching the worst case execution time of tasks as much as possible without violating deadlines. We prove that ES-EDF is optimal in minimizing processor energy consumption and maximum lateness for which an upper bound on the processor energy saving is derived. In order to demonstrate the benefits of our algorithm, we evaluate it by means of simulation. Experimental results show that ES-EDF outperforms EDF and Enhanced EDF (E-EDF) algorithms in terms of both percentage of feasible task sets and energy savings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy efficient semi-partitioned scheduling for embedded multiprocessor streaming systems

In this paper, we study the problem of energyminimization whenmapping streaming applications with throughput constraints to homogeneous multiprocessor systems in which voltage and frequency scaling is supported with a discrete set of operating voltage/frequency modes. We propose a soft real-time semi-partitioned scheduling algorithm which allows an even distribution of the utilization of tasks ...

متن کامل

Energy Management for Embedded Multithreaded Processors with Integrated EDF Scheduling

This paper proposes a new hardware-based energy management technique for future embedded multithreaded processors with integrated Earliest Deadline First (EDF) real-time scheduling. Our energy management technique controls frequency reduction and dynamic voltage scaling depending on the deadlines, the Worst Case Execution Times (WCET), and the real execution times. Hard real-time capability can...

متن کامل

Energy minimization techniques for real-time scheduling on multiprocessor platforms

The scheduling of systems of periodic tasks upon multiprocessor systems with processors of di ering speeds is considered. Computation speeds may di er because the system is comprised of di erent types of processors | i.e. it may be a uniformmultiprocessor platform. Alternatively, the platform may be comprised of identical processors with speeds that di er because some processors may have their ...

متن کامل

Energy-Saving in Wireless Sensor Networks Based on Optimization Sink Movement Control

A sensor network is made up of a large number of sensors with limited energy. Sensors collect environmental data then send them to the sink. Energy efficiency and thereby increasing the lifetime of sensor networks is important. Direct transfer of the data from each node to the central station will increase energy consumption. Previous research has shown that the organization of nodes in cluster...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014